عوامل مؤثر بر استفاده دانشجویان کشاورزی از شبکه‌های اجتماعی مجازی (مورد مطالعه: دانشگاه زنجان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده کشاورزی، دانشگاه زنجان، زنجان ایران.

2 دانشیار، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران.

چکیده

با وجود اهمیت شبکه­ های اجتماعی مجازی در بهبود کیفیت یادگیری، استفاده آموزشی دانشجویان از این شبکه­ ها در سطح چندان مطلوبی نیست. با توجه به اهمیت مسئله، این پژوهش توصیفی- همبستگی با هدف بررسی عوامل مؤثر بر استفاده دانشجویان رشته های کشاورزی از شبکه‌های اجتماعی مجازی بر مبنای مدل پذیرش فناوری انجام گرفت. جامعه آماری این پژوهش شامل تمامی دانشجویان رشته­ های کشاورزی دانشگاه زنجان بود (1227=N). بر اساس جدول کرجسی-مورگان، تعداد 296 نفر از دانشجویان با استفاده روش نمونه‌گیری طبقه‌ای با انتساب متناسب برای انجام تحقیق انتخاب شد. ابزار گردآوری داده‌ها در این پژوهش، پرسشنامه بود که روایی صوری آن با نظر پانلی از متخصصان تأیید شد و روایی سازه و پایایی ترکیبی آن نیز با برآورد مدل اندازه ­گیری به دست آمد. نتایج نشان داد که "ارسال تکالیف و فعالیت­ های کلاسی"، "دستیابی به آخرین اطلاعات و خبرها در خصوص مسائل درسی" و "اطلاع­ رسانی به سایر دانشجویان در زمینه­ های مختلف درسی"، اصلی ­ترین موارد استفاده دانشجویان مورد مطالعه از شبکه‌های اجتماعی مجازی بودند. همچنین، چهار متغیر جذابیت ادراک­ شده، لذت ادراک ­شده، خودکارآمدی ادراک ­شده و اضطراب ادراک ­شده 72 درصد از واریانس متغیر سهولت ادراک ­شده و دو متغیر سودمندی ادراک ­شده و سهولت ادراک ­شده 67 درصد از واریانس متغیر نگرش را تبیین کردند. به طور مشابه، متغیر نگرش نیز 45 درصد از واریانس میزان استفاده دانشجویان از شبکه­ های اجتماعی مجازی را تبیین کرد. با توجه به یافته­ ها، پیشنهادهای اصلی این پژوهش شامل برگزاری جلسات توجیهی، سمینارها و کارگاه ­های آموزشی برای آشناسازی دانشجویان با نحوه استفاده از شبکه ­های اجتماعی مجازی، پشتیبانی و ارائه خدمات فنی مناسب به دانشجویان، استفاده از رسانه­ های چاپی برای آگاهی رسانی به دانشجویان درباره امکانات و قابلیت ­های شبکه­ های اجتماعی مختلف، استفاده از شبکه های اجتماعی شناخته شده برای فعالیت­ های آموزشی و افزایش سواد اطلاعاتی و رسانه­ ای دانشجویان، بودند.

کلیدواژه‌ها


عنوان مقاله [English]

Factors Affecting Agricultural Students' Use of Virtual Social Networks (The Case of Zanjan University)

نویسندگان [English]

  • Fatemeh Mohammadi 1
  • Leila Safa 2
1 M.Sc student, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
2 Associate professor, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
چکیده [English]

Despite the importance of virtual social networks (VSNs) in improving the quality of learning, students' educational use of these networks is not very desirable. Given the importance of the issue, this descriptive-correlational study was conducted to investigate the factors affecting the use of VSNs by agricultural students based on the technology acceptance model. The statistical population of the study was included all agricultural students of University of Zanjan (N = 1227). Based on Krejcie-Morgan table, 296 of the students were selected for the study using stratified sampling method with proportional assignment. The data collection tool in this study was a questionnaire whose face validity was confirmed by a panel of experts and its construct validity and composite reliability were obtained by estimating the measurement model. The results showed that "sending homework and classroom activities", "access to the latest information and news about educational issues", and "informing other students in different educational fields" were the main uses of VSNs by the surveyed students. Moreover, four variables of perceived playfulness, perceived enjoyment, perceived self-efficacy, and perceived anxiety were accounted for 72 percent of the variance of the perceived ease and two variables of perceived usefulness and perceived ease were accounted for 67 percent of the variance of attitude. Similarly, the attitude was explained 45 percent of the variance of students' use of VSNs. According to the findings, the main suggestions of the study were included holding briefings, seminars and workshops to familiarize students with how to use VSNs, supporting and providing appropriate technical services to students, employingprint media to inform students about the facilities and capabilities of different VSNs, applying known VSNs for educational activities, and increasing students' information and media literacy.

کلیدواژه‌ها [English]

  • Agricultural Higher Education
  • Information technologies
  • Technology Acceptance Model
  • Virtual Space
برآبادی، ا. (1399). تحلیل کاربرد شبکه­ های اجتماعی در آموزش عالی کشاورزی ایران. رساله دکتری، دانشکده کشاورزی، دانشگاه زنجان.
پهلوان ­شریف، س.، و مهدویان، و. (1394). مدل ­سازی معادلات ساختاری با AMOS. تهران: انتشارات بیشه.
حیدری، ح.، البرزی، م.، و موسی­خانی، م. (1395). عوامل مؤثر بر ترغیب دانشجویان به استفاده از شبکه­ های اجتماعی به عنوان یک شبکه آموزش مجازی. مجله تعامل انسان و اطلاعات، دوره 3، شماره 2، صص 69-56.
رازقی، ن.، ابراهیم صالحی، ع.، و کاظمی، م. (1399). تأثیر شبکه­ های اجتماعی بر عملکرد آموزشی و پژوهشی دانشجویان تحصیلات تکمیلی دانشگاه مازندران. مجله مطالعات برنامه­ ریزی آموزشی، دوره 9، شماره 17، صص 298-282.
رضائی، ر.، صفا، ل.، و ادیبی، م. (1395). عوامل مؤثر بر قصد استفاده از شبکه اجتماعی تلگرام در فعالیت‌های آموزشی در بین دانشجویان دانشگاه فردوسی مشهد. مجله پژوهش‌های ارتباطی، دوره 23، شماره 87، صص 64-37.
صفا، ل.، و ولی ­نیا، س. (1399). عوامل تأثیرگذار بر رفتارهای حفاظت از منابع آب در بین کشاورزان شهرستان زنجان: کاربرد نظریه انگیزش حفاظت. مجله علوم ترویج و آموزش کشاورزی ایران، دوره 16، شماره 1، صص 150-131.
صفا، ل.، رضائی، ر.، و کرباسیون، م. (1398). عوامل تأثیرگذار بر قصد استفاده کشاورزان از زنبور براکون در مبارزه با کرم هلیوتیس گوجه فرنگی در شهرستان طارم. مجله علوم ترویج و آموزش کشاورزی ایران، دوره 15، شماره 2، صص 222-205.
مختاری ­حصاری، آ.، رضائی، ر.، و شعبانعلی­ فمی، ح. (1399). تحلیل عوامل مؤثر بر رفتار کشاورزان در بکارگیری سامانه آبیاری کم‌فشار در استان آذربایجان شرقی. مجله علوم ترویج و آموزش کشاورزی ایران، دوره 16، شماره 2، صص 143-125.
موحدی، ر.، سامیان، م.، ایزدی، ن.، و سپه ­پناه، م. (1398). تأثیر شبکه­ های اجتماعی مجازی در بهبود یادگیری دانشجویان دانشکده کشاورزی دانشگاه بوعلی ­سینا. مجله پژوهش مدیریت آموزش کشاورزی، دوره 48، صص 16-3.
موسوی، ج.، شکفته، پ.، و امان الهی، آ. (1398). بررسی فراوانی و الگوی استفاده از شبکه­ های اجتماعی در دانشجویان پزشکی. مجله دانشگاه علوم پزشکی مازندران، دوره 23، شماره 172، صص 152-146.
میرزایی، م.، رحیمی، ص.، و مرادی، م. (1395). بررسی نقش شبکه‌های اجتماعی در تبادل‌های علمی (مطالعه موردی: دانشجویان تحصیلات تکمیلی دانشگاه راضی). مجله کتابداری و اطلاع­ رسانی، دوره 19، شماره 1، صص 130-108.
 
Abdullah, F., and Ward, R. (2016). Developing a general extended technology acceptance model for e-learning by analyzing commonly used external factors. Computers in Human Behavior, 56, 238-256.
Abood, N. (2019). Big five traits: A critical review. International Journal of Business, 21(2), 159-186.
Ajzen, I., and Fishbein, M. (1980). Understanding attitude and predicting scial Behavior. New Jersey:  Pearson Prentice Hall Publisher.
Al Hashimi, S., Al Muwali, A., Zaki, Y., and Mahdi, N. (2019). The effectiveness of social media and multimedia-based pedagogy in enhancing creativity among art, design, and digital media students. International Journal of Emerging Technologies in Learning, 14(21), 176-190.
Alduaij, M. (2019). Employing the technology acceptance model to explore the trends of social media adoption and its effect on perceived uefulness and perceived ease of use. Journal of Information Technology Management, 11(2), 129-143.
Al-Gahtani, S. (2016). Empirical investigation of e-learning acceptance and assimilation: A structural equation model. Applied Computing and Informatics, 12, 27-50.
Al-Rawi, A. (2019). The effect of using wiki techniques as a collaborative learning on improving EFL learners' writing performance. Journal of Colloid and Interface Science, 1(1), 17-33.
Al-Sharafi, A., Mufadhal, E., Sahabudin, A., and Arshah, A. (2019). Acceptance of online social networks as technology-based education tools among higher institution students: Structural equation modeling approach. Scientia Iranica, 26(1), 136-144.
Ansari, N., and Khan, A. (2020). Exploring the role of social media in collaborative learning the new domain of learning. Smart Learning Environments, 7(1), 1-16.
Asiedu, K., and Badu, E. (2018). Motivating issues affecting students' use of social media sites in Ghanaian tertiary institutions. Library Hi Tech, 36(1), 167-179.
Berestova, A., Ermakov, D., Aitbayeva, A., Gromov, E., and Vanina, E. (2021).  Social networks to improve the creative thinking of students: How does it works? Thinking Skills and Creativity, 41, 100912-100921.
Borrero, D., Yousafzai, Y., Javed, U., and Page, L. (2014). Expressive participation in internet social movements: Testing the moderating effect of technology readiness and sex on student SNS use. Computers in Human Behavior, 30, 39-49.
Çelik, H. (2011). Influence of social norms, perceived playfulness and online shopping anxiety on customers' adoption of online retail shopping: An empirical study in the Turkish context. International Journal of Retail & Distribution Management, 39, 390-413.
Chang, C., Hung, S., Cheng, M., and Wu, C. (2015). Exploring the intention to continue using social networking sites: The case of Facebook. Technological Forecasting & Social Change, 95, 48-56.
Chang, W., and Chen, M. (2014). College students' disclosure of location-related information on Facebook. Computers in Human Behavior, 35, 33-38.
Chang, W., and Heo, J. (2014). Visiting theories that predict college students' self-disclosure on Facebook. Computers in Human Behavior, 30, 79-86.
Chen, I. (2017). Computer self- efficacy, learning performance, and the mediating role of learning engagement. Computers in Human Behavior, 72, 362-370.
Cheung, K., Chiu, Y., and Lee, O. (2011). Online social networks: Why do students use Facebook? Computers in Human Behavior, 27(4), 1337-1343.
Davis, F. (1986). A technology acceptance model for empirically testing new end- user information systems: Theory and results. Ph.D. Dissertation. Massachusetts Institute of Technology, United States.
Davis, F. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
Davis, F., Bagozzi, R., and Warshaw, P. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22, 1111-1132.
Davis, F., Bagozzi, R., and Warshaw, R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
Devi, K. S., Gouthami, E., and Lakshmi, V. V. (2019). Role of social media in teaching- learning process. Journal of Emerging Technologies and Innovative Research, 6(1), 96-103.
Dixit, R., and Prakash, G. (2018). Intentions to use social networking sites (SNS) using technology acceptance model (TAM): An empirical study. Paradigm, 22(1) 65-79.
Doleck, T., Bazelais, P., and Lemay, J. (2017). Examining the antecedents of social networking sites use among CEGEP students. Education and Information Technologies, 22(5), 2103-2123.
Dumpit, D., and Fernandez, C. (2017). Analysis of the use of social media in higher education institutions using the technology acceptance model. International Journal of Educational Technology in Higher Education, 14(5), 1-16.
Gharrah, A., and Aljaafreh, A. (2021). Why students use social networks for education: Extension of UTAUT2. Journal of Technology and Science Education, 11(1), 53-66.
Giannikas, C. (2020). Facebook in tertiary education: The impact of social media in e-learning. Journal of University Teaching and Learning Practice, 17(1), 1-15.
Greenhow, C., and Chapman, A. (2020). Social distancing meet social media: Digital tools for connecting students, teachers, and citizens in an emergency. Information and Learning Sciences, 21(5/6), 341-352.
Ha, L., Joa, Y., Gabay, I., and Kim, K. (2018). Does college students' social media use affect school e-mail avoidance and campus involvement? Internet Research, 28(1), 213-231.
Hair, J., Black, W., Babin, B., and Anderson, R. (2010). Multivariate data analysis. London: Pearson Education.
Hasan, R., Lukitasari, M., Utami, S., and Anizar, A. (2019). The activeness, critical, and creative thinking skills of students in the lesson study-based inquiry and cooperative learning. Journal Pendidikan Biologi Indonesia, 5(1), 77-84.
Hwang, Y. (2016). Understanding social influence theory and personal goals in e-learning. Information Development, 32(3), 1-12.
Ifinedo, P. (2016). Applying uses and gratifications theory and social influence processes to understand students' pervasive adoption of social networking sites: Perspectives from the Americas. International Journal of Information Management, 36(2), 192-206.
Issa, T., Alqahtani, S., Al-Oqily, I., Goktalay, S., Kose, U., Issa, T., Salih, B., and Almufaraj, W. (2021). Use of social networking in the Middle East: Student perspectives in higher education. Heliyon, 7, e06676.
Kasperski, R., and Blau, I. (2020). Social capital in high-schools: Teacher-student relationships within an online social network and their association with in-class interactions and learning. Interactive Learning Environments, 22, 1-18.
Khoynaroud, A. A., Akbarzadeh, A., Ghojazadeh, M., and Ghaffarifar, S. (2020). Integrative application of an educational wiki and Flipped classrooms: Student learning outcomes and impacts on doing academic group-works. BMC Medical Education, 20, 293-303.
Lin, K. Y., and Lu, H. P. (2011). Why people use social networking sites: An empirical study integrating network externalities and motivation theory. Computer Human Behavior, 27, 1152-1161.
Luo, M. M., and Chea, S. (2020). Wiki use for knowledge integration and learning: A three tier conceptualization. Computers & Education, 154, 103920.
Mahmodi, M., Masoomifard, M., and Mohammadi, M. (2020). Factors affecting the instructional application of virtual social networks in higher education. Interdisciplinary Journal of Virtual Learning in Medical Sciences, 11(3), 180-190.
Masrom, M., Busalim, A., Abuhassna, H., and Mahmood, N. (2021). Understanding students’ behavior in online social networks: A systematic literature review. International Journal of Educational Technology in Higher Education, 18, 1-27.
Moghavvemi, S., Paramanathan, T., Rahin, M., and Sharabati, M. (2017). Student's perceptions towards using e-learning via Facebook. Behaviour and Information Technology, 36(10), 1081-1100.
Moon, J., and Kim, Y. (2001). Extending the TAM for a world-wide-web context. Information & Management, 38, 217-230.
Nawi, C., Al Mamun, A., Nasir, M., Shokery, B., Raston, A., and Fazal, A. (2017). Acceptance and usage of social media as a platform among student entrepreneurs. Journal of Small Business and Enterprise Development, 24(2), 375-393.
Nguyen, P., Do, Y., and Wu, W. (2021). Technology acceptance model and factors affecting acceptance of social media: An empirical study in Vietnam. Journal of Asian Finance, Economics and Business, 8(6), 1091-1099.
Olatoye, R. (2009). Influence of computer anxiety and knowledge of computer utilization of senior secondary school students. Electronic Journal of Research in Educational Psychology, 7(9), 79-87.
Oribhabor, B. (2020). Investigating the influence of computer anxiety on the academic performance of junior secondary school students in computer studies in Nigeria. International Journal of Computing Sciences Research, 4(4), 370-382.
Pulgar, J. (2021). Classroom creativity and students’ social networks: Theoretical and practical implications. Thinking Skills and Creativity, 42, 100942.
Qiao, X., and Zhu, Y. (2011). A review of theory and research based on uses and gratifications in HCI. Paper presented at the advances in computer science, environment, ecoinformatics, and education. August 21-22, Wuhan, China.
Rahiminia, H., Soori, H., Jafari, M., and Khodakarim, S. (2021). The prevalence of addiction to social network among students in Iran and its factors related: A study conducted in 2020. Clinical Practice and Epidemiology in Mental Health, 17(1), 170-176.
Schlebusch, C. (2018). Computer anxiety, computer self- efficacy and attitudes towards the internet of first year students at a South African University of Technology. Africa Education Review, 15(3), 72-90.
Sin, J., and Kim, S. (2013). International students' everyday life information seeking: The informational value of social networking sites. Library and Information Science Research, 35(2), 107-116.
Skues, L., Williams, B., and Wise, L. (2012). The effects of personality traits, self- esteem, loneliness, and narcissism on Facebook use among students. Computers in Human Behavior, 28(6), 2414-2419.
Sledgianowski, D., and Kulviwat, S. (2009). Using social network sites: The effects of playfulness, critical mass, and trust in a hedonic context. The Journal of Computer Information Systems, 49(4), 74-83.
Spanò, R., and Ferri, L. (2020). Information systems in healthcare: Current issues and future trends. UK: Cambridge Scholar Publishing.
Taghavinezhad, S. Z., Nazari, F., and Bigdeli, Z. (2015). Review of factors effecting social networks acceptance among graduate students at Islamic Azad university of Ahvaz. Indian Journal of Science and Technology, 8(21), 1-9.
Teo, T., Doleck, T., and Bazelais, P. (2018). The role of attachment in Facebook usage: A study of Canadian college students. Interactive Learning Environments, 26(2), 256-272.
Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365.
Venkatesh, V., and Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315.
Venkatesh, V., and Davis, F. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
Weerasinghe, S., and Hindagolla, M. (2018). Technology acceptance model and social network sites (SNS): A selected review of literature. Global Knowledge, Memory and Communication, 67(3), 142-153.
Yarahmadi, S., Zarei, F., Sadooghiasl, A., and Jeong, S. (2020). The prevalence of internet addiction and its associated factors among Iranian adults. Iranian Rehabilitation Journal, 18(2), 163-70.
Yazdanparast, A., Joseph, M., and Qureshi, A. (2015). An investigation of Facebook boredom phenomenon among college students. Young Consumers, 16(4), 468-480.
Yi, M., and Hwang, H. (2003). Predicting the use of web-based information systems: Self- efficacy, enjoyment, learning goal orientation, and the technology acceptance model. International Journal of Human-Computer Studies, 59, 431-449.
Zaineldeen, S., Hongbo, L., Koffi, A., and Hassan, B. (2020). Technology acceptance model' concepts, contribution, limitation, and adoption in education. Universal Journal of Educational Research, 8(11), 5061-5071. 
Zhang, X., and Prybutok, V. (2005). A consumer perspective of e-service quality. IEEE Transactions on Engineering Management, 52(4), 461-477.
Zubkova, M., Iu, N., Baranova, L., Pirozhkova, A., and Bubenchikova, A. (2019). Approaches to the future engineers' foreign communicative culture formation. Humanities & Social Sciences Reviews, 7(4), 781-786.